
Revisiting the double checkpointing algorithm

Jack Dongarra1, Thomas Herault1 and Yves Robert1,2

1. University of Tennessee Knoxville, USA

2. Ecole Normale Supérieure de Lyon & INRIA, France

{dongarra|herault}@eecs.utk.edu, yves.robert@ens-lyon.fr

Abstract—Fast checkpointing algorithms require distributed
access to stable storage. This paper revisits the approach
base upon double checkpointing, and compares the blocking
algorithm of Zheng, Shi and Kalé [1], with the non-blocking
algorithm of Ni, Meneses and Kalé [2] in terms of both
performance and risk. We also extend the model proposed
in [1], [2] to assess the impact of the overhead associated to
non-blocking communications. We then provide a new peer-to-
peer checkpointing algorithm, called the triple checkpointing
algorithm, that can work at constant memory, and achieves
both higher efficiency and better risk handling than the double
checkpointing algorithm. We provide performance and risk
models for all the evaluated protocols, and compare them
through comprehensive simulations.

I. INTRODUCTION

Parallel computing environments follow an exponential

trend in doubling their size on a regular basis. The Top

500 ranking1 features a typical illustration of this trend

in the High Performance Computing world: the measured

performance doubled every 18 months for the last 15 years.

Since the multicore revolution, motivated by the impedi-

ment of frequency increase, this growth is sustained by the

multiplication of cores and sockets in parallel machines.

The International Exascale Software Project (IESP) [3], [4]

forecasts the Exaflop mark to be reached by high perfor-

mance supercomputers by 2019-2022. In their study, which

proposes an outline of the characteristics of an Exascale

machine based on foreseeable limits of the hardware and

maintenance costs, a machine in this performance range is

expected to be built from GHz processing cores, with thou-

sands of cores per computing node (up to 1012 flop/s/node),

thus requiring millions of computing nodes to reach the goal.

A major concern in the IESP report is reliability. If we

consider that failures of computing nodes are independent,

the reliability probability of the whole system (i.e. the

probability that all components will be up and running

during the next time unit) is the product of the reliability

probability of each of the components. A very conservative

assumption of a fifty years MTBF (Mean Time Between

Failures) translates into a probability of 0.999998 that a

node will still be running in the next hour. However, if the

system consists of a million of nodes, the probability that

at least one unit will be subject to a failure during the next

1http://www.top500.org

hour jumps to 1 − 0.99999810
6

> 0.86. This probability is

significantly high, especially since the machine was used for

only one hour. One can conclude that many computing nodes

will inevitably fail during the execution of a long-running

Exascale application.

A traditional approach to tolerate failures in parallel

computing relies on rollback/recovery: processes can take

a checkpoint of their state, together (in coordinated check-

pointing protocols), or independently (in uncoordinated

checkpointing protocols with message logging). In case of

failures, they are rolled back from these saved states, to allow

further progress of the computation. A critical point of such

an approach is to store the checkpoint images efficiently

and reliably. One of the reasons why uncoordinated check-

pointing can provide a better efficiency than coordinated

checkpointing, despite the higher overheads it imposes on

a failure free execution, is because it reduces the amount of

data transferred at rollback [5].

Zheng, Shi and Kalé [1] consider the issue of where to

store the checkpoint images in order to reduce the demand

on I/O during checkpoint phases. They proposed a “buddy”

algorithm, that we call the double checkpointing algorithm

in the rest of this paper, because it creates a copy of the

process checkpoint in a remote process. In this algorithm,

processes are coupled: checkpoints are kept in the storage

space (local drive or memory) of the buddy, and reciprocally.

Each process also keeps a local copy (local drive or memory)

of its last checkpoint image. In case of failure, all living

processes rollback from the local image, while the processes

replacing a process victim of a failure load the corresponding

checkpoints from the designated buddies. This approach

allows to use the high-speed network to transfer the check-

point, and to distribute the load of checkpoint storage (which

happens in a single wave in coordinated checkpointing

protocols) between all the peers of the system. The double

checkpointing algorithm comes in two versions: after the

blocking version of [1], a non-blocking version has been

introduced by Ni, Meneses and Kalé [2], which exhibits

better performance, because checkpointing can then be (at

least partially) overlapped with computations. However, the

increased performance comes with a higher risk of fatal

failure, which is not addressed in [2].

In this paper, we revisit both versions of the double

checkpointing algorithm, and we introduce a unified and

2013 IEEE 27th International Symposium on Parallel & Distributed Processing Workshops and PhD Forum

978-0-7695-4979-8/13 $26.00 © 2013 IEEE

DOI 10.1109/IPDPSW.2013.11

706

1

1

δ θ σ

φ

φ

P

Local checkpoint
done

Remote checkpoint
done

Period
done

Node p

Node p'

Figure 1: Non-blocking checkpoint algorithm (see [2]).

extended model to assess both the performance and risk

of the different strategies. Our first major contribution is

to provide a quantitative assessment of the impact of non-

blocking checkpointing on both performance and risk. Our

second major contribution is the design of a new peer-to-

peer checkpointing algorithm, called the triple checkpointing

algorithm, that can work at constant memory, and achieves

both a higher efficiency and a better risk handling than the

double checkpointing algorithm. We provide performance

and risk models for all the evaluated protocols, and compare

them through comprehensive simulations.

The rest of this paper is organized as follows: in Sec. II,

we present the double checkpointing algorithm, together

with our model extension to assess the impact of non-

blocking protocols. We show how to compute the optimal

checkpoint period in Sec. III. Next, we introduce the triple

checkpointing algorithm in Sec. IV, and we conduct its

analysis in Sec. V. Then, having a performance model for

all the algorithms, we instantiate these models using a com-

prehensive set of parameters, and compare their efficiency

and risk in Sec. VI. We discuss related work in Sec. VII.

Finally, we provide concluding remarks.

II. THE DOUBLE CHECKPOINTING ALGORITHM

In this section, we review and extend the double check-

pointing algorithm that has been proposed in the literature,

first with a blocking version by Zheng, Shi and Kalé [1],

and then with a non-blocking version by Ni, Meneses and

Kalé [2]. In both versions, the main idea is to avoid using

a centralized stable storage by storing checkpoints in local

memory. To avoid the possibility for a single failure to crash

the whole application, local checkpoints must be replicated.

Thus platform nodes are partitioned into pairs, and each

node in a pair exchanges its checkpoint with its buddy. As a

consequence, each node saves two checkpoints, one locally

(storing its own data) and one remotely (receiving and stor-

ing its buddy’s data), hence the name double checkpointing.

The double checkpointing algorithm is a coordinated pro-

tocol where nodes operate synchronously. In what follows,

we reuse the notations of [2] whenever possible. Also,

without loss of generality, it is assumed that the application

progresses at unit speed when it is not slow-downed by

checkpoint-related activities, so that time-units and work-

units can be used indifferently. The non-blocking algorithm

is illustrated in Figure 1 and is summarized below:

• Checkpoints are taken periodically, with a period P =
δ + θ + σ

• In the first part of the period, of length δ, each node

checkpoints locally, in blocking mode. No application

work is performed in parallel.

• In the second part of the period, of length θ, each

node checkpoints remotely, i.e. it exchanges its check-

point file with its buddy. Some application work is

performed in parallel, but not at full speed, due to the

overhead induced by the concurrent communications

for exchanging files. This overhead is expressed as φ
work units.

• In the third part of the period, of length σ, the appli-

cation progresses at full speed.

Altogether, in the absence of failures, the work executed

during each period of length P is

W = (θ − φ) + σ = P − δ − φ

Note that in the original paper [2], the period is decomposed

is only two parts, with τ = θ + σ being the time after

the local checkpoint, letting P = δ + τ and W = τ − φ.

Decomposing the period into three parts is equivalent but

makes thing clearer when failures strike (see Sec. III).

A key-feature of the non-blocking algorithm is to over-

lap computations and checkpoint file exchanges during the

second part of the period of length θ, at the price of some

overhead φ. Intuitively, the larger θ, the more flexibility to

hide the cost of the file exchange, hence the smaller the

overhead due to checkpointing in the absence of failures.

However, in [2], the overhead φ is fixed independently of

the value of θ. We propose to extend the model as follows:

• When θ = θmin, the communication has the smallest

possible duration. In this case it is fully blocking,

and no computation can take place concurrently. The

overhead is 100%, i.e., φ = θmin.

• When θ = θmax, the communication is made long

enough so that it can fully be overlapped with com-

putation. In that case, the overhead is φ = 0.

• We use a linear interpolation between these extremes.

The overhead is φ when the communication time is

θ(φ) = θmin + α(θmin − φ)

We derive that φ = 0 for θ = θmax = (1 + α)θmin.

This last equation gives an intuitive explanation for

the parameter α, which measures the rate at which

the overhead decreases when the communication length

increases.

In a failure-free environment, both θ and σ should be

made as large as possible, in order to minimize the overhead

due to local and remote checkpointing. This is equivalent to

letting the ratio W
P tend to 1. But the advent of failures calls

for smaller period lengths. Indeed, let M denote the Mean

Time Between Failures (MTBF) of the platform. When a

707

failure hits a node, which happens every M time-units in

average, the work executed since the last checkpoint is

lost, and must be re-executed, which induces an overhead

proportional to the loss. The optimal period length P is the

result of the trade-off between minimizing the waste due to

checkpointing (large periods) and re-executing only a small

amount of work when a failure strikes (small periods).

When a failure hits a node, there is a downtime period

of length D for that node, that represent the overhead to

detect the failure and allocate a new replacement node for the

computation. Then we can start the recovery from the buddy

node. There are two checkpoint files that have been lost due

to the failure, and which the buddy node must re-send to the

faulty processor: (i) the checkpoint file of the faulty node,

which is needed for recovery; and (ii) the checkpoint file of

the buddy node, which has been lost after the failure and

which will be needed if the buddy node would fail later on.

Obviously, the first file (checkpoint of the faulty node)

should be sent as fast as possible, i.e. in time θmin, because

all processors are stopped until the faulty one has recovered

from the failure. Using the notations of [2], the recovery time

R is thus equal to θmin. As for the second file (checkpoint

of the buddy), there are two possibilities:

• The file is sent at the same speed as in regular (failure-

free) mode, in time θ(φ). Some overlap is possible,

and the overhead is φ. This scenario, which we call

DOUBLENBL ((NBL for Non-Blocking), is the one

chosen in [2].

• The file is sent as fast as possible, in time θmin = R.

This scenario, which we call DOUBLEBOF (BOF for

Blocking on Failure), does not allow for any overlap

during the communication.

The application is at risk as long as the faulty processor

has not stored a copy of its buddy’s checkpoint file. In

other words, until complete reception of both messages, it

is impossible to recover from a second failure that would

hit the buddy. One can say that the DOUBLEBOF favors

risk reduction, at the price of a higher overhead, while

DOUBLENBL favors performance, at the price of a higher

risk. In Sec. III, we provide a detailed analysis of the

performance and risk of both strategies.

III. ANALYSIS OF THE DOUBLE CHECKPOINTING

ALGORITHM

In this section, we compute the overhead induced by

the double checkpointing algorithm, and we analytically

determine the optimal checkpointing period.

A. Computing the waste

Let Tbase be the base time of the application without any

overhead due to resilience techniques. First, assume a fault-

free execution of the application: every period of length P ,

only W = P − δ− φ units of work are executed, hence the

time Tff for a fault-free execution is

1

1

δ θ σ

φ

φ

P

Node p

Node p'

1

1

δ θ

φ

φ

tlost

Checkpoint of
p

Checkpoint of
p'

Risk Period

Node to replace p

θ

φ 1

tlostD R

Figure 2: DOUBLENBL strategy, failure during third part of

the period

Tff =
P
W

Tbase (1)

Now, let T denote the expectation of the execution time

with the double checkpointing algorithm (any version). T
can refer to a single application or to the platform life if

many jobs are running concurrently. In average, failures

occur every M time-units, and for each of them we lose

F time-units, so there are T
M failures during the execution.

Hence we derive the equation:

T = Tff +
T

M
F (2)

which we rewrite as

(
1− F

M

)(
1− δ + φ

P
)
T = Tbase (3)

Defining the waste as

WASTE = 1−
(
1− F

M

)(
1− δ + φ

P
)

(4)

we can express Equation (3) as
(
1 − WASTE

)
T = Tbase.

The waste is the fraction of time where nodes do not

perform useful computations. In Equation (4), we identify

the two sources of overhead: (i) the term WASTEff =
δ+φ
P ,

which is the waste due to checkpointing in a fault-free

execution, by construction of the algorithm; and (ii) the term

WASTEfail =
F
M , which is the waste due to failures striking

during execution. With these notations, Equation (4) writes:

1−WASTE =
(
1−WASTEfail

)(
1−WASTEff

)
, and we derive

WASTE = WASTEfail + WASTEff −WASTEfailWASTEff (5)

There remains to determine the (expected) value of F in

each strategy, denoted as Fnbl for DOUBLENBL and Fbof for

DOUBLEBOF. Then we will be able to determine the value

of P that minimizes T in Equation (3), or, equivalently, that

minimizes WASTE in Equation (5).

DOUBLENBL strategy: Here we aim at determining

the expected value of Fnbl for the DOUBLENBL strategy,

where the fault node starts by receiving its own checkpoint

file in time R before the buddy’s checkpoint file in time

θ(φ). The faulty node undergoes a downtime and recovery,

of length D + R. Then it starts re-executing the work that

has been lost. The amount of work to re-execute depends

upon the part of the period where the failure strikes, hence

there are three cases. Now, failures strikes uniformly across

the period, regardless of the distribution law of the failures:

708

this is because the instants at which periods begin and at

which faults strike are independent. Hence we can compute

Fnbl = D +R+
δ

PRE1 +
θ

PRE2 +
σ

PRE3 (6)

where RE i is the expected re-execution time when the

failure strikes during the i-th part of the period.

We start with the case when the failure causes the least

damage i.e. when it strikes during the third part of the period,

after both checkpoints have been taken. See Figure 2 for an

illustration. We compute RE3 as follows:

• The faulty processor cannot execute any work during

D +R time-units.

• Then it starts re-executing the work that has been

lost, namely Wlost = (θ − φ) + tlost. The first term

corresponds to the work executed during the second

part of the period, taking into account the overhead

associated to this part. The second term comes from

the third part of the period, where work executes at

full speed.

• During the first θ time-units of re-execution, there is an

overhead φ due to receiving the buddy’s checkpoint.

After that, the re-execution of the remaining work

Wlost − (θ − φ) progresses at full speed.

Altogether, the re-execution time is θ +Wlost − (θ − φ) =
θ + tlost. The expected value of tlost is σ

2 , because failures

strike uniformly during the third part of the period. This

leads to

RE3 = θ +
σ

2

When a failure hits the first part of the period, during local

checkpointing, it causes more damage: the work W during

the whole previous period has to be re-executed, and we get

Wlost = W + tlost. Just as before, the re-execution time is

θ +Wlost − (θ − φ). Here the expected value of tlost is δ
2 .

We derive:

RE1 = θ + σ +
δ

2

When a failure hits the second part of the period, during

remote checkpointing, it causes the same damage as during

the first part: the work W during the whole previous period

has to be re-executed, and we get Wlost = W+tlost. Again,

the re-execution time is θ+Wlost−(θ−φ), but the expected

value of tlost is even higher than when the failure hits the

first part of the period: tlost = δ + θ
2 . We derive:

RE2 = θ + σ + δ +
θ

2

We are ready to compute the value of Fnbl using Equa-

tion (6). After some simplifications, we obtain

Fnbl = D +R+ θ +
P
2

(7)

This is almost in accordance with the value reported in [2]:

they derive the value Fnbl − φ instead of Fnbl, because they

forgot the overhead due to receiving the second checkpoint

file while re-executing.

DOUBLEBOF strategy: Here we aim at determining

the expected value of Fbof for the DOUBLEBOF strategy,

where both checkpoint files are received in minimum time

θmin = R. As before, there are three cases, depending upon

the part of the period where the failure strikes, and the

computation goes in a similar way as for the DOUBLENBL

strategy. Indeed, for each part of the period, the amount

of work to re-execute Wlost is the same, but it is entirely

executed at full speed instead of being slowed-down during

the first θ time-units (since all communications are already

completed). In other words, we add R to the recovery time to

account for the second blocking message, and we suppress

φ from the time needed to re-execute, which leads to:

Fbof = Fnbl +R− φ = D + 2R+ θ − φ+
P
2

(8)

B. Waste minimization

We use a computer algebra system (Maple2) to compute

the optimal period that minimizes the total waste. We obtain

the following formulas:

T Onbl =
√
2(δ + φ)(M −R−D − θ) (9)

T Obof =
√
2(δ + φ)(M − 2R−D − θ + φ) (10)

There is a similarity with the formulas of Young [6],

namely T =
√
2Mδ + δ, and of Daly [7], namely T =√

2(M + (D +R))δ+ δ. However, in both these formulas,

δ represents the time needed to checkpoint the whole ap-

plication onto stable storage, while with the (distributed)

double checkpointing algorithm, δ is the time needed to

checkpoint a single node locally. The value of the optimal

period is therefore much larger for the double checkpointing

algorithm than for a centralized scheme based on global

remote storage. The value of the optimal waste, whose

dominant term is
√

2δ
M for all reasonably large values of

M , is reduced accordingly.

C. Risk

When a failure strikes a node, the application is at risk

until the faulty node has recovered and received the copy of

its buddy’s checkpoint. We let Risk denote the length of the

risk period, which is Risk = D+2R for DOUBLEBOF and

Risk = D +R+ θ for DOUBLENBL.

In this section, we compute the success probability of

the application (no fatal failure throughout execution) for

both strategies. Let n be the number of processors in the

whole platform. Assume as in [1] that failures strike with

uniform distribution over time, and let λ = 1
nM denote the

instantaneous failure rate of each processor. The inverse of λ

2http://www.maplesoft.com/products/Maple/

709

is the individual processor MTBF and is estimated to range

from a few years to one century in the literature.

Recall that T denotes the expectation of the execution

time of the application with the double checkpointing algo-

rithm (any version). Consider a pair made of one processor

and its buddy. The probability of having the first processor

fail during execution is λT , and the probability of having

the pair failing during execution is 1 − (1 − λT)2 ≈ 2λT .

Now, given that one processor fails, the probability of having

the second one fail right after, within the risk period, is

λRisk. Hence the probability that the pair experiences a fatal

failure during execution is 2λTλRisk. Since the application

succeeds if and only if all pairs succeed, the probability

that the application will fail is 1 − (1 − 2λ2TRisk)n/2, or

equivalently, the success probability is

Pdouble = (1− 2λ2TRisk)n/2 (11)

This equation was originally given in [1], except that they

forgot the factor 2 to account for the failure probability of

both processors in the pair. They also compare the value

of Pdouble with the probability Pbase that the application will

succeed in the absence of checkpointing. In that case, the

execution time is Tbase, and we derive that

Pbase = (1− λTbase)
n (12)

Equation (11) assesses the impact of the risk period length

Risk on the resilience of the application. We can now

quantitatively compare the DOUBLENBL and DOUBLEBOF

strategies in terms of both performance and reliability. We

provide such an evaluation in Sec. VI.

IV. THE TRIPLE CHECKPOINTING ALGORITHM

In this section, we introduce a new algorithm based on

processor triples rather than on processor pairs. We show that

this new algorithm is both more efficient and reliable than

the double checkpointing algorithm, while equally memory-

demanding. In fact, the main motivation to design a novel

in-memory checkpointing algorithm is to provide a better

answer to the following question: given a fixed amount

of memory available for checkpointing, what is the best

strategy for performance and reliability?

The double checkpointing algorithm of [1], [2] requires

that sets of two checkpoint files can be stored in the memory

of each processor. As with all coordinated checkpointing

protocols, the collection, for all processes in the system, of

a set of checkpoints, represents the (global) snapshot of the

parallel application. Such sets must be updated atomically.

This is implemented by keeping two sets at all time: the

last set of checkpoints that was successful (by definition

the first set of checkpoints is represented by the starting

configuration of the application and is always successful),

and the current set of checkpoints, that might be unfinished

at the time when a failure hits the system.

1

1

θ σ

φ

P

Remote checkpoint
done on preferred buddy Period

done

Node p

Node p'

φ

φ

Node p"

θ

φ

Remote checkpoint
done on secondary buddy

φ 1

φ

Figure 3: The triple checkpointing algorithm

So, in double checkpointing algorithms, a local set con-

tains two images: the image of the current process and

the image of the buddy process. Given this memory con-

straint, can we do better than pairing each processor with a

buddy? In fact, when a failure strikes a processor, the local

checkpoint is lost, and must be recovered from the buddy.

This calls for replacing the local checkpoint by that of a

secondary buddy. Let us consider how checkpoint images

are created: a process can create its checkpoint image using

the fork system call that creates a copy in memory of the

current state of the process. Modern operating systems do

not create an explicit copy of all the pages of the parent

process at the time of the call, but instead mark all pages of

the parent process as copy-on-write, allowing to share most,

if not all, the process pages. The parent process can continue

its work, while the child process uploads its checkpoint

image to the buddy file system, releasing its private copy

of the pages as soon as they are successfully uploaded. This

incurs a minimum overhead to the checkpointing process,

and allows a significant overlap of application process and

checkpoint transfer. If the rate of transmission is high

enough, only a small number of pages will need to be

actually duplicated before the child process releases them.

Buddy processes can then store the checkpoint images

in their memory or in local storage, as they were doing

in the double checkpointing algorithm. The system must

decide for a trade-off between taking more time to upload

the checkpoint image to the buddy processes in order to

reduce the pressure on the network, and taking less time to

upload the checkpoint image to the buddy processes in order

to reduce the amount of pages that must be created with

the copy-on-write mechanism. This trade-off is simplified

by ordering the data that is uploaded to the buddy processes

from the most likely to be modified to the least likely to be
modified by the ongoing computation.

This idea leads us to the triple checkpointing algorithm,

which is illustrated in Figure 3. Processors are organized

in triples. Within a triple, each processor p has a preferred

buddy p′ and a secondary buddy p′′. We organize a rotation

of buddies, so that p′ has p′′ for preferred buddy and p for

secondary buddy, and p′′ has p for preferred buddy and p′

for secondary buddy.

From Figure 3, we see that the algorithm operates in

a similar way as the double checkpointing algorithm. The

710

period is still divided into three parts, but the first part is

different: the local checkpoint is replaced by sending the

checkpoint image to the preferred buddy (and receiving the

checkpoint of the secondary buddy). The duration of the

first part becomes θ(φ) instead of δ. The second part of the

period is for an exchange of checkpoint files (sending to

the secondary buddy and receiving from the preferred one),

and its duration is θ(φ), just as before. During the third part

of the period, computations proceed at full speed during σ
seconds, just as before again.

The main advantage of the new scheme is to dramatically

reduce the overhead induced by checkpointing (WASTEff, the

waste due to checkpointing in a fault-free execution, tends

to zero) while maintaining a smaller risk, even for large

values of θ that might be needed to achieve a fully non-

blocking, hence overhead-free, checkpoint. Indeed, there

must be three successive failures within a processor triple

for the application to experience a fatal failure, instead of

two failures striking a processor and its buddy in the double

checkpointing algorithm.

One can envision two versions for the triple checkpointing

algorithm. After a failure, the preferred buddy always sends

the checkpoint file of the faulty node as fast as possible,

in blocking mode, and in time θmin = R. But there is a

choice for the next two communications, that correspond

to the checkpoint images of the two buddies. Either these

communications are executed in blocking mode and in

minimum time, or they are executed in overlapped mode, in

time θ(φ). The first version further reduces the risk, while

the second version minimizes the overhead. Because the risk

is already very low in both versions, we only deal with the

second, non-blocking version, which we denote as TRIPLE.

V. ANALYSIS OF THE TRIPLE CHECKPOINTING

ALGORITHM

In this section we compute the waste and the risk of the

triple checkpointing algorithm TRIPLE. We use the same

notations as in Sec. III. Since the derivation is similar, we

omit details and only provide final formulas.

A. Computing the waste

As before (see Equation (5)), there are two sources of

overhead: WASTEff, the waste due to checkpointing in a

fault-free execution, and WASTEfail = Ftri

M , the waste due

to failures striking during execution. It is easy to derive that

WASTEff =
2φ
P . As for the value of Ftri, we use a modified

version of Equation (6) to account for the different lengths

of the three parts of the period:

Ftri = D +R+
θ

PRE1 +
θ

PRE2 +
σ

PRE3 (13)

We proceed to determine the (expected) value of F :

• RE1 = 2θ + σ + θ
2

• RE2 = 3θ
2

• RE3 = 2θ + σ
2

which leads to

Ftri = D +R+ θ +
P
2

(14)

We observe that the value of F is the same for DOU-

BLENBL and TRIPLE (Fnbl = Ftri). Hence the value of

WASTEfail is the same too. However, the final waste is

different, because we now have WASTEff = 2φ
P instead of

WASTEff =
δ+φ
P .

B. Waste minimization

As before, we use the computer algebra system to com-

pute the optimal period that minimizes the total waste. We

obtain the following formula, which is similar to the value

obtained for DOUBLENBL (Equation (9)):

T Otri = 2
√
φ(M −D −R− θ) (15)

C. Risk

When a failure strikes a node, the application is at risk

until the faulty node has recovered and received the copy of

its two buddy checkpoints. We let Risk denote the length of

the risk period, which is Risk = D + R + 2θ (note that it

would be reduced to Risk = D+3R if we used a blocking-

on-failure version of the algorithm).

We compute the probability of a fatal failure using

the same line of reasoning as before. Let T denote the

expectation of the execution time of the application with

the triple checkpointing algorithm (any version). Consider

a triple made of one processor and its two buddies. The

probability of having one of the three processors fail during

execution is 3λT , up to second order terms. Given that

one processor fails, the probability of having the pair of

remaining processors fail right after, within the risk period, is

2λRisk, up to second order terms. And given that situation,

the probability that the last processor also fails during the

risk period is λRisk. Finally, the probability that the triple

experiences a fatal failure during execution is 6λ3TRisk2.

Since the application succeeds if and only if all triples

succeed, the probability that the application will succeed is

Ptriple = (1− 6λ3TRisk2)n/3 (16)

Sec. VI provides a quantitative comparison of the success

probability of the double and triple checkpointing algo-

rithms.

VI. EXPERIMENTS

In this section, we consider the efficiency and risk of

DOUBLENBL, DOUBLEBOF and TRIPLE, under different

realistic conditions. Table I summarizes the two different

scenarios that we consider, namely Base taken from [2]

and Exa which models future exscale platforms.

711

1min
10min

1h
4h

1 day 0
 0.2

 0.4
 0.6

 0.8
 1

 0
 0.2
 0.4
 0.6
 0.8

 1

W
a

s
te

M (s)
φ/R

W
a

s
te

 0

 0.2

 0.4

 0.6

 0.8

 1

(a) DOUBLEBOF

1min
10min

1h
4h

1 day 0
 0.2

 0.4
 0.6

 0.8
 1

 0
 0.2
 0.4
 0.6
 0.8

 1

W
a

s
te

M (s)
φ/R

W
a

s
te

 0

 0.2

 0.4

 0.6

 0.8

 1

(b) DOUBLENBL

1min
10min

1h
4h

1 day 0
 0.2

 0.4
 0.6

 0.8
 1

 0
 0.2
 0.4
 0.6
 0.8

 1

W
a

s
te

M (s)
φ/R

W
a

s
te

 0

 0.2

 0.4

 0.6

 0.8

 1

(c) TRIPLE

Figure 4: Waste for Scenario Base, function of φ/R and M

Scenario D δ φ R α n
Base 0 2 0 ≤ φ ≤ 4 4 10 324× 32
Exa 60 30 0 ≤ φ ≤ 60 60 10 106

Table I: Parameters for the different scenarios: D is the down

time; δ the time to take the local checkpoint; φ, the amount

of overhead; R the base time to load a remote checkpoint in

blocking mode; α the overlap speedup factor, which defines

θ the time to upload a remote checkpoint; n is the number

of platform nodes (used for the risk assessment).

A. Base scenario

The Base scenario takes the same values as [2]: for

checkpointing a memory of 512MB, the time to produce

a local checkpoint at the speed of SSDs is about 2s; for

uploading the same amount of data to a remote neighbor, at

the considered network speed, the time to upload (without

any work in parallel) will be about 4s. Since [2] does not

consider the time to allocate a new node on the machine,

we let D = 0. They consider only two cases for φ and

α: when the checkpoint operation cannot overlap with any

application progress (φ = R), or when checkpointing does

not imply any overhead on the progress (φ = 0, and α > 0).

Figure 4 presents the waste, with the model-computed

optimal checkpoint time, of each algorithm, as a function of

φ (between 0 and R; the ratio φ/R is presented in the figure

for normalization) and of M (from 15s, where no progress

happens for any protocol, up to 1 day, where the waste is

almost 0 for all), the latter shown on a logarithmic scale. By

varying φ, we consider the waste when the amount of work

that can be done during the checkpoint phase varies from 0
to no overhead at all. Moreover, since α = 10, checkpoint

communication is completely hidden between application

communications if the optimal checkpointing period allows

a duration of at least (α + 1)R = 11R. We point out that

this is a conservative assumption on the communication-to-

computation ratio.

Comparing the three subfigures together, one can see

that TRIPLE behaves slightly differently than DOUBLENBL

and DOUBLEBOF: indeed, TRIPLE takes a higher benefit

of a low value of φ, because it does not suffer from the

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
W

a
s
te

 R
a
ti
o

φ/R

DoubleBoF/DoubleNBL
Triple/DoubleNBL

Figure 5: Waste for Scenario Base, (M = 7h).

period δ during which no progress is done in the double

checkpointing protocols. In a realistic setup, φ will not go

down completely to 0 in the triple checkpointing protocol,

because during the checkpoint transfer, some pages may

need to be copied by the copy on write mechanism of

fork; still, a very small ratio φ/R can be achieved for

large enough values of θ, the file exchange phase. Similarly,

using the same approach, the value of δ could be reduced

significantly in the double checkpointing protocols, allowing

for a better benefit of the φ parameter. All three kinds of

protocols, however, clearly reduce their waste in a similar

fashion when the MTBF increases.

The differences between the three protocols is better

illustrated with Figure 5 which compares the waste of the

three algorithms, with a fixed value for M = 7h, relatively

to the efficiency of DOUBLENBL. The benefit of a non-

blocking approach is small, but noticeable: DOUBLEBOF

has always a higher waste than DOUBLENBL, until the

ratio of work that can be done during the checkpoint makes

waiting for the checkpoint transfer transparent.

Up to φ/R ≤ 0.5, TRIPLE has a much smaller waste

than any of the double checkpointing protocols. Because the

number of faults is low, the dominating part of the waste

comes from the failure-free case. TRIPLE does not suffer

from a blocking checkpoint time, as DOUBLENBL and

DOUBLEBOF do, and thus proves more efficient whenever

a large amount of work can be done in parallel with

712

 0 5 10 15 20 25 30

1

10

20

30

 0
 0.2
 0.4
 0.6
 0.8

 1

S
u
c
c
e
s
s
 P

ro
b
a
b
ili

ty
 R

a
ti
o

M (minutes)
Platform Exploitation

(days)

S
u
c
c
e
s
s
 P

ro
b
a
b
ili

ty
 R

a
ti
o

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

(a) Ratio DOUBLENBL/ DOUBLEBOF succes probability

 0 5 10 15 20 25 30

1

10

20

30

 0
 0.2
 0.4
 0.6
 0.8

 1

S
u
c
c
e
s
s
 P

ro
b
a
b
ili

ty
 R

a
ti
o

M (minutes)
Platform Exploitation

(days)

S
u
c
c
e
s
s
 P

ro
b
a
b
ili

ty
 R

a
ti
o

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

(b) Ratio DOUBLEBOF/ TRIPLE succes probability

Figure 6: Relative success probability for Scenario Base,

function of M and platform life T . θ = (α+ 1)R.

the checkpoint. Once more time is spent communicating

checkpoint data than computing, however, TRIPLE suffers

from its double amount of data to communicate (compared

to the double checkpointing approaches, TRIPLE needs to

exchange twice the data on the network). The overhead,

however, is limited to 15% more waste in the worst case.

Furthermore, DOUBLEBOF and TRIPLE are expected to

provide a better risk preservation than DOUBLENBL. This

is the property that we quantify next. Figure 6a represents

the relative risk between DOUBLEBOF and DOUBLENBL.

A lower value means that DOUBLEBOF provides a better

risk tolerance. As illustrated by the figure, this is measurable

for long period of times (above 10 days), and for very low

MTBF (M ≤ 60s); otherwise all protocols have a success

probability almost equal to 1. On this setup, the benefit of

blocking during the checkpoint is not significant, even if it

induces a waste lower than 2%. Figure 6b presents the same

comparison, but with TRIPLE compared to DOUBLENBL,

the most secure version of double checkpointing. Again,

a lower value means that TRIPLE provides a better risk

tolerance than DOUBLENBL. This time, in the same range

as where DOUBLEBOF was providing a small risk improve-

ment, the gain is quite significant, providing risk mitigation

by orders of magnitude. More importantly, even when the

MTBF increases, and the application duration decreases,

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

W
a
s
te

 R
a
ti
o

φ/R

DoubleBoF/DoubleNBL
Triple/DoubleNBL

Figure 8: Waste for Scenario Exa, (M = 7h).

TRIPLE is able to tolerate twice more runs without incurring

a fatal failure than DOUBLENBL. It is striking to point out

that these numbers are achieved with θ = (α+ 1)R, which

corresponds to the largest possible risk duration for TRIPLE.

B. Exa scenario

We now consider a future exascale machine, as can be en-

visioned by the IESP work force in [3], [4]. Such a machine

is summarized in Table I under the name Exa: based on

the assumption of a 1-GHz limit for each core, it will hold

109 1-GHz cores. Taking the “slim” exascale assumption,

these cores would be distributed among 106 nodes, with

1, 000 cores per nodes. Memory previsions plan around

64GB of memory per core, and we took the assumption

of a 1TB/s/node network capacity, and 500Gb/s/node of bus

limitation for the local storage capacity.

We then conducted the same set of evaluations as with

the Base scenario. Results are presented in Figures 7 to 9b.

First, we observe the same general behavior. TRIPLE remains

more robust than double checkpointing protocols for very

high failure frequency and long applications. DOUBLENBL

and DOUBLEBOF have a similar waste, also, as expressed

by Figure 8, but the gain of TRIPLE increases up to 25%

of that of DOUBLENBL when φ/R = 1/10 while being

more reliable (see Figure 9b). The model also forecasts

that on such machines, the waste will be important when

failures hit the system more than once a day. Last, for

such an environment, Figure 9a shows that DOUBLEBOF

can provide a higher reliability than DOUBLENBL, to a

higher extent than on the Base scenario, for long-running

applications. As expected, TRIPLE provides an even higher

robustness with this respect (see Figure 9b), even with the

largest possible risk period (θ = (α+ 1)R).

VII. RELATED WORK

Coordinated checkpointing has been studied since many

years. The major appeal of the coordinated approach is

its simplicity, because a parallel job using n processors of

individual MTBF Mind can be viewed as a single processor

job with MTBF M = Mind

n . Given the value of M , an

approximation of the optimal checkpointing period can be

713

1min

10min
1h

4h
1 day 0

 0.2
 0.4

 0.6
 0.8

 1

 0
 0.2
 0.4
 0.6
 0.8

 1

W
a

s
te

M
φ/R

W
a

s
te

 0

 0.2

 0.4

 0.6

 0.8

 1

(a) DOUBLEBOF

1min

10min
1h

4h
1 day 0

 0.2
 0.4

 0.6
 0.8

 1

 0
 0.2
 0.4
 0.6
 0.8

 1

W
a

s
te

M
φ/R

W
a

s
te

 0

 0.2

 0.4

 0.6

 0.8

 1

(b) DOUBLENBL

1min

10min
1h

4h
1 day 0

 0.2
 0.4

 0.6
 0.8

 1

 0
 0.2
 0.4
 0.6
 0.8

 1

W
a

s
te

M
φ/R

W
a

s
te

 0

 0.2

 0.4

 0.6

 0.8

 1

(c) TRIPLE

Figure 7: Waste for Scenario Exa, function of φ/R and M

 0 5 10 15 20 25 30 35 40 45 50 55 60

 0
 10

 20
 30

 40
 50

 60

 0
 0.2
 0.4
 0.6
 0.8

 1

S
u
c
c
e
s
s
 P

ro
b
a
b
ili

ty
 R

a
ti
o

M (minutes) Platform Exploitation
(weeks)

S
u
c
c
e
s
s
 P

ro
b
a
b
ili

ty
 R

a
ti
o

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

(a) Ratio DOUBLENBL/ DOUBLEBOF succes probability

 0 5 10 15 20 25 30 35 40 45 50 55 60

 0
 10

 20
 30

 40
 50

 60

 0
 0.2
 0.4
 0.6
 0.8

 1

S
u
c
c
e
s
s
 P

ro
b
a
b
ili

ty
 R

a
ti
o

M (minutes) Platform Exploitation
(weeks)

S
u
c
c
e
s
s
 P

ro
b
a
b
ili

ty
 R

a
ti
o

 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

(b) Ratio DOUBLEBOF/ TRIPLE succes probability

Figure 9: Relative success probability for Scenario Exa,

function of M and platform life T . θ = (α+ 1)R.

computed as a function of the key parameters (downtime D,

checkpoint time C and recovery time R). The first estimate

had been given by Young [6] and later refined by Daly [7].

Both use a first-order approximation for Exponential failure

distributions; their derivation is similar to the approach in

Equations (1) to (5). More accurate formulas for Weibull

failure distributions are provided in [8], [9], [10]. The

optimal checkpointing period is known only for Exponential

failure distributions [11]. Dynamic programming heuristics

for arbitrary distributions are proposed in [12], [13], [11].

The literature proposes different works [14], [15], [16],

[17], [18] on the modeling of coordinated checkpointing

protocols. In particular, [15] and [14] focus on the usage of

available resources: some may be kept as backup in order

to replace the down ones, and others may be even shutdown

in order to decrease the failure risk or to prevent storage

consumption by saving less checkpoint snapshots.

The major drawback of coordinated checkpointing proto-

cols is their lack of scalability at extreme-scale. These proto-

cols will lead to I/O congestion when too many processes are

checkpointing at the same time. Even worse, transferring the

whole memory footprint of an HPC application onto stable

storage may well take so much time that a failure is likely

to take place during the transfer! A few papers [18], [19]

propose a scalability study to assess the impact of a small

MTBF (i.e., of a large number of processors). The mere

conclusion is that checkpoint time should be dramatically

reduced for platform waste to become acceptable.

This very conclusion is the major motivation for the

development of distributed checkpoint mechanisms. A first

idea is to use a multi-level approach, with local disks for a

high-rate checkpointing period and global stable storage for

a smaller-rate checkpointing period. Another possibility is

the in-memory blocking approach (with a buddy) suggested

by Zheng, Shi and Kalé [1]. This in-memory checkpointing

technique was later extended to a non-blocking version by

Ni, Meneses and Kalé [2]. As already mentioned, these

two papers constitute the main motivation for this work.

While [2] discusses the advantages of the non-blocking

version over the blocking version in terms of performance,

it fails to mention the augmented risk. This is why we

have presented a two-criteria assessment of both versions.

In addition, this paper is the first attempt at providing a

unified model for quantifying the impact and overhead of

checkpointing in parallel with application progress.

VIII. CONCLUSION

Checkpoint transfer and storage are the most critical issues

of rollback/recovery protocols for the next few years. The

overhead of transferring the checkpoint images to a stable

storage dominates the cost related to this approach, and

714

algorithms that allow to distribute this load among the whole

system provide a much better scalability in the number

of processors. However, since checkpoint storage is not

reliable anymore, these algorithms introduce a risk of non-

recoverable failures.
In this work, we have reconsidered the double checkpoint-

ing algorithms proposed by Zheng, Shi and Kalé [1] and

by Ni, Meneses and Kalé in [2], and we have introduced

a new version, the DOUBLEBOF algorithm, that takes the

same approach as [2], but tries to reduce the duration of

the risk period by focusing all resources to restore a safe

state, at the cost of increasing the overhead of each failure.

More importantly, we have provided a unified and extended

model that allows a performance/risk bi-criteria assessment

of existing and future double-checkpointing algorithms. The

model incorporates a new parameter α that dictates how

fast a checkpoint can be transferred to overlap entirely the

transfer cost with application computation.
We have also designed a new triple checkpointing algo-

rithm that builds on modern operating system features to

save the checkpoint on two remote processes instead of one,

without much more memory or storage requirements. The

new algorithm has excellent success probability and almost

no failure-free overhead when full overlap of checkpoint

transfers can be enabled. We have derived the performance

and risk factors of the new algorithm using our unified

model, and we have compared these factors to those of

both double checkpointing versions. We have instantiated

our model with realistic scenarios, which all conclude to

the superiority of the triple-checkpointing algorithm.
Future work will proceed along two main directions. First,

we took conservatively high values for the new model pa-

rameter α in this study, thereby reducing the potential benefit

of the triple checkpointing algorithm. We plan to extend

this work by studying real-life applications and propose

refined values for α for a set of widely-used benchmarks.

Second, the perspective of very small MTBF values on

future exascale platforms calls for combining distributed in-

memory strategies such as those discussed in this paper, with

uncoordinated or hierarchical checkpointing protocols with

message logging, in order to further reduce the waste due

to failure recovery.

Acknowledgments. Y. Robert is with the Institut Universitaire

de France. This work was supported in part by the ANR

RESCUE project.

REFERENCES

[1] G. Zheng, L. Shi, and L. V. Kale, “FTC-Charm++: an in-
memory checkpoint-based fault tolerant runtime for Charm++
and MPI,” in Proc. 2004 IEEE Int. Conf. Cluster Computing.
IEEE Computer Society, 2004.

[2] X. Ni, E. Meneses, and L. V. Kalé, “Hiding checkpoint over-
head in HPC applications with a semi-blocking algorithm,”
in Proc. 2012 IEEE Int. Conf. Cluster Computing. IEEE
Computer Society, 2012.

[3] J. Dongarra, P. Beckman, P. Aerts, F. Cappello, T. Lippert,
S. Matsuoka, P. Messina, T. Moore, R. Stevens, A. Trefethen,
and M. Valero, “The international exascale software project:
a call to cooperative action by the global high-performance
community,” Int. J. High Perform. Comput. Appl., vol. 23,
no. 4, pp. 309–322, 2009.

[4] F. Cappello, A. Geist, B. Gropp, L. Kale, B. Kramer, and
M. Snir, “Toward Exascale Resilience,” Int. J. High Perform.
Comput. Appl., vol. 23, no. 4, pp. 374–388, 2009.

[5] A. Bouteiller, T. Herault, G. Krawezik, P. Lemarinier, and
F. Cappello, “MPICH-V: a multiprotocol fault tolerant MPI,”
IJHPCA, vol. 20, no. 3, pp. 319–333, 2006.

[6] J. W. Young, “A first order approximation to the optimum
checkpoint interval,” Comm. of the ACM, vol. 17, no. 9, pp.
530–531, 1974.

[7] J. T. Daly, “A higher order estimate of the optimum check-
point interval for restart dumps,” FGCS, vol. 22, no. 3, pp.
303–312, 2004.

[8] Y. Ling, J. Mi, and X. Lin, “A variational calculus approach
to optimal checkpoint placement,” IEEE Trans. Computers,
pp. 699–708, 2001.

[9] T. Ozaki, T. Dohi, H. Okamura, and N. Kaio, “Distribution-
free checkpoint placement algorithms based on min-max
principle,” IEEE TDSC, pp. 130–140, 2006.

[10] M.-S. Bouguerra, T. Gautier, D. Trystram, and J.-M. Vincent,
“A flexible checkpoint/restart model in distributed systems,”
in PPAM, ser. LNCS, vol. 6067, 2010, pp. 206–215.

[11] M. Bougeret, H. Casanova, M. Rabie, Y. Robert, and
F. Vivien, “Checkpointing strategies for parallel jobs,” in
SC’2011 Supercomputing Conference. ACM Press, 2011.

[12] S. Toueg and O. Babaoglu, “On the optimum checkpoint
selection problem,” SIAM J. Computing, vol. 13, no. 3, pp.
630–649, 1984.

[13] M.-S. Bouguerra, D. Trystram, and F. Wagner, “Complexity
analysis of checkpoint scheduling with variable costs,” IEEE
Transactions on Computers, vol. 99, no. PrePrints, 2012.

[14] J. S. Plank and M. G. Thomason, “Processor allocation and
checkpoint interval selection in cluster computing systems,”
J. Parallel Dist. Computing, vol. 61, p. 1590, 2001.

[15] H. Jin, Y. Chen, H. Zhu, and X.-H. Sun, “Optimizing HPC
fault-folerant environment: an analytical approach,” in ICPP’
2010. IEEE Computer Society, 2010.

[16] L. Wang, P. Karthik, Z. Kalbarczyk, R. Iyer, L. Votta, C. Vick,
and A. Wood, “Modeling Coordinated Checkpointing for
Large-Scale Supercomputers,” in Proceedings of ICDSN’05,
2005, pp. 812–821.

[17] R. Oldfield, S. Arunagiri, P. Teller, S. Seelam, M. Varela,
R. Riesen, and P. Roth, “Modeling the impact of check-
points on next-generation systems,” in Proceedings of IEEE
MSST’07, 2007, pp. 30 –46.

[18] Z. Zheng and Z. Lan, “Reliability-aware scalability models
for high performance computing,” in Proc. of IEEE Clus-
ter’09, 2009, pp. 1 –9.

[19] F. Cappello, H. Casanova, and Y. Robert, “Preventive mi-
gration vs. preventive checkpointing for extreme scale super-
computers,” Parallel Processing Letters, vol. 21, no. 2, pp.
111–132, 2011.

715

